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Continued fraction perturbation theory : applications to 
radiative processes in the dipole approximation 
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Department of Applied Mathematics and Theoretical Physics, The Queen’s University of 
Belfast, Belfast BT7 lNN,  U K  

Received 7 November 1974, in final form 24 March 1975 

Abstract. A general perturbation procedure is described for writing down the contributions 
to any order for the probability of a quantum system described by a time-independent 
Hamiltonian making a transition from an arbitrary initial state to an arbitrary final state. 
The results are expressed in terms of certain propagators which involve continued fractions. 
so that some processes are summed to all orders. The general theory I S  then applied to a 
single multilevel atom interacting with any number of modes of the electromagnetic field 
in the electric dipole approximation. This work may be regarded as a generalization of 
earlier treatments of the corresponding single-mode, two-level atom problem involving the 
continued fraction approach. We are mainly concerned with the fundamental theory here. 
but a detailed discussion is given of spontaneous and stimulated emission. Expressions for 
the lineshape are derived incorporating the generalized Lamb shifts and damping constants. 

1. Introduction 

A very common model for describing the properties of atomic systems interacting with 
electromagnetic fields is that in which the coupling is taken to be electric dipole (Power 
and Zienau 1959), and this is the situation we are concerned with here. We first develop 
an improved form of perturbation theory for calculating the probability of transitions 
between two arbitrary states of a system whose Hamiltonian may be decomposed into a 
perturbed and unperturbed part. We describe rules for calculating the transition 
probability to any order. This general theory is then specialized to deal with the inter- 
acting single atom/electromagnetic field problem. Our method is applicable to atomic 
systems with any number of energy levels, and to any number of electromagnetic field 
modes. The treatment is non-relativistic but fully quantum electrodynamical. No 
approximations beyond the electric dipole approximation are introduced. 

In two previous publications (Swain 1973a, to be referred to as I ,  1973b) we have 
derived continued fraction solutions to the problem of a single two-level atom interacting 
with a single quantized field mode in the dipole approximation. The semi-classical 
version of the continued fraction approach allows an elegant treatment of various 
problems in radio frequency spectroscopy (see for example Autler and Townes 1955, 
Stenholm 1972, Tsukada and Ogawa 1973, Stenholm and Aminoff 1973, Swain 1974). 
The connection between the semi-classical and quantum electrodynamical solutions 
has been discussed by Swain (1973~). In view of its usefulness, it is natural to enquire 
whether the continued fraction approach for a single mode and two atomic levels can 
be generalized to deal with any number of modes and atomic levels. The present work 
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had its source in this consideration. Although we are mainly concerned with establishing 
the fundamental method here, by way of illustration we give an account of stimulated 
and spontaneous emission in Q 5. This is perhaps the most fundamental of radiative 
phenomena, and it is a first consideration to see how our method deals with it. 

The system we consider may be described by the Hamiltonian 

where 

H A  = li)Ei(il 
i 

Here H A  is the Hamiltonian for the isolated atom which has eigenstates li) with energies 
Ei, and H F  is the Hamiltonian for the free field with the zero-point energy omitted. U,, and 
a1 are the usual Bose annihilation and creation operators for photons of mode % and 
frequency w I .  (We understand I to include the mode wavevector k and the polarization 
index a : 1 k, a.) We use rationalized MKS units, but for simplicity we set h = 1 through- 
out. Ei  and ai thus have the same dimensions. H A ,  describes the interaction between 
the atom and the field in the electric dipole approximation. The coupling constant, g,”, has 
the value 

where OA is the angle between the atomic dipole moment p and the electric vector of the 
Ath mode, and V is the volume of the system. 

Other systems of physical interest, for example an isolated paramagnetic ion inter- 
acting with phonons in a crystal, or an atom situated in a DC magnetic field with an 
oscillating magnetic field at right angles to it, may be described by the same Hamiltonian 
(1). but with gti having a different form to that given in (2). It is only in 5 5 that we use 
the explicit form for g,“, so the previous analysis applies equally well to such situations. 

In the examples we give we will assume 

gjj = 0, all j (2b) 

ie, that g?jis strictly off-diagonal, but we only do this to simplify the expressions obtained ; 
i t  is not essential. 

The first term of ( I d )  describes processes in which a photon of mode i, is absorbed, 
and the second those in which such a photon is emitted. In each case the atom changes its 
state from li) to I j ) .  These processes, and the associated matrix elements, are shown in 
figure 1 with the corresponding matrix elements. (Only photons which are emitted or 
absorbed are shown in the diagrams, and we assume that there are n, photons in the 
mode E. initially.) 

According to Power and Zienau (1959), (Id) is the lowest approximation to the 
interaction between the atoms and the EM field ; additional terms representing magnetic 
dipole, electric quadrupole, and higher multipole contributions should be added. 
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/ f / 1 
Absorption Emission 

h - g,, Anh+ I )  h 
s,, Jnh  

Figure 1. The primary processes of the electric dipole interaction Hamiltonian: the tran- 
sitions in -h -1. (absorption) and in + j D j .  (emission). Here U k 1 n, , n2.. . . , nL k 1,. . . , nN. 
The corresponding matrix elements are indicated on the diagrams. 

Furthermore, there is the term 

1 
H ,  = - 1 d3xIP(x)12 

2 E O  

where P ( x )  is the polarization vector operator of the atom. Using the approach of 
Power and Zienau (8 4.2) this may be written 

The integral over k in (3b) extends from 0 to  a, so that it diverges (this is just one of 
the divergences of quantum electrodynamics). However, for the moment we work with 
it as though it were a finite quantity. We may split HP into diagonal and off-diagonal 
parts : 

H p - - H(d) p + H p  

where 

The important term is (3c ) :  this may be written 

H(pd) = li)6Ei(il 
i 

where 

On comparing ( l b )  and ( 3 f )  it is clear that H(pd) just shifts each level Ei by the (divergent) 
amount 6 E i .  We return to a discussion of H(pd) in 0 5,  and for simplicity we neglect H(pd), 
although we describe how to account for it at the end of 0 3. 

In 6 2 we derive the fundamental equations governing the transition probabilities, 
and in 9 3 we show how these equations may be solved. In the latter section we also 
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summarize the rules for calculating the transition probabilities to any order. In 8 4 we 
show how the previously derived results for the two-level atom, single-mode problem 
may be obtained from this formalism, and finally, in 8 5 we show how the fundamental 
phenomena of stimulated and spontaneous emission may be treated by our method. 

2. Form of the general solutions 

The approach we use is the generalized Fourier/Laplace transform technique described 
by Pike and Swain (1971) (see also I). We wish to calculate quantities of the type P;(t), 
the probability that the system will be in state If) at time t if it was in state li) at time 0. 
To do this we first calculate the generalized Laplace transform, L:(E) of the matrix 
element of the time development operator, (il exp(iHt)lf), and then obtain Pi([ )  from 
the inverse transform 

Here E is the Laplace variable, and the contour lies above the real axis. I t  is easy to 
see that Li(E) is given explicitly by the relation 

where 14) and E ,  are exact eigenvectors and eigenvalues of the complete Hamiltonian. 
Clearly L:(E) is a matrix element of the resolvent operator (Goldberger and Watson 
1964) 

G(E)  = (E-H)- ' .  (6)  

EL:(E) = (ilf)+Lh,(E) (7) 

I t  follows from the definition (5) that Li(E) obeys the equation of motion 

where the suffix Hf is shorthand for the state Hlf). This equation is somewhat similar 
to that obeyed by the Green functions of many-body theory. The connection between 
the present approach and the traditional Green function method is discussed by Pike 
and Swain (1971). 

The fact that the states i and fare arbitrary complicates the argument, and we find it 
convenient to express Li(E) in terms ofthe functions L@), where the states la), Ib), IC), . . . 
form a complete orthonormal set : C, la)(al = 1. Introducing two such complete sets 
into the definition ( 5 )  for L:(E) we obtain 

where we have interchanged the order of summation, and then noted that the expression 
in large parentheses in (8) is just the definition of Lz(E). Thus instead of calculating 
L:(E) directly, we may instead first find L:(E), and then use (9) to obtain L:(E). The 
advantage of this approach is that L;(E) has a particularly simple equation of motion, 
because (alb)  = 
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Now we further assume that the Hamiltonian may be decomposed into a perturbed 
and an unperturbed part, 

H = H o + V  (10) 

H o b )  = Kla>. (11) 

and that the states la), Ib), . , . are eigenvectors of the unperturbed Hamiltonian H o .  

From the definition ( 5 )  we have 

and from (10) and (1 1) 

( c l H l b )  = wbsc,b+ I/Eb, 

where V,, (cl Vlb).  Hence we easily obtain 

L$b(  E )  = W b L ;  + K b L f .  (12) 
C 

Using (12) in the equation of motion (7) for L;(E) leads to  the modified equation of 
motion 

( E -  Wb)L",E) = 1 K b L : ( E )  
C 

or 

For a fixed value of a, equation (13) defines in general an infinite set of coupled 
equations for the ,!,;(E), j = a, b, c, . . . . However, this set is particularly simple in that 
only when b = a is there a constant term on the right-hand side, and then this is unity. 
Thus the equations for the L;(E), j # a form a homogeneous set; one may therefore 
solve this set for the Ly(E) in terms of L:(E), then substitute these expressions for the 
L;(E) into equation (13) for b = a. This determines Li(E). We shall illustrate this 
procedure shortly. Equation (13) is the most convenient for developing the perturbation 
series, and we shall refer to it as the fundamental equation. We note that only off- 
diagonal elements of V appear on the right-hand side. 

Finally we note the symmetry relation 

L p )  = (L:(E))* (14a) 

q t )  = W), (14b) 

which follows trivially from the definition ( 5 ) .  I t  implies the property 

so that mathematically it does not matter which state we take to be the initial state 
and which the final one. 

3. Solution of the fundamental equations 

In order to develop the perturbation series it is convenient to change our notation 
somewhat. We now use A to label the initial state, B to label the set of all states, 
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D the set D,, 

. . for which VB,A # 0 but excluding the initial state A,  C the set 
. . for which VcJB, # 0, but excluding A and any member of the set B, 
D2, D,, . . . for which VDrCJ # 0 but excluding A and any members of the 

sets B and C ,  and so on. Thus the states Bi are connected to state A in the first order 
of perturbation theory, the states Cj in second order (via the states Bi), etc. 

With this notation the first few members of the set may be written 

where qj = WJ+ Vjj  and for clarity we have not displayed the E dependence of the 
L functions explicitly. 

Let S be the determinant of the system of equations (15). Then according to standard 
theory (Margenau and Murphy 1956) the solution is 

SAN L; = - 
S 

where SIJ is a cofactor of S. The determinant S may be expanded in terms of its elements 
S, and its cofactors as 

s = l S K I S K '  (17) 
I 

where the sum over I extends over all the unperturbed eigenstates A ,  B, C, D, . . . and 
K may be any one of these states. 

Choosing K = A in (17) we obtain 

We may expand S A B  using an expression similar to (17) but now we choose K = B. 
Then (18) may be written 

where SAB.lJ is a cofactor of SAB. The final two terms in (19) may also be expanded 
using (17), the object being to choose K in each case so that only diagonal cofactors tend 
to appear. The process may be repeated indefinitely so that an infinite series is generated. 
By diagonal cofactors, we mean those of the form S'J*JK,KL,L', which in fact is the 
determinant obtained from S by striking out the Zth, Jth, Kth, and Lth rows and columns. 
As the order in which the rows and columns are struck out is of no significance, we 
could have written this as S".JJ.K".LL. To simplify the notation it is convenient to write 
these diagonal cofactors as 

(20) s I I , J J . K K . L L  = - y I J K L  
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We may now write the expansion for S as 

s = ( E -  W A ) y A -  1 VABVB"Y'~-  1 1 v A B , ~ B * B V B A ~ ~ P ~ ~ ' ~  
B B ' # B  B 

and thus, from (16), we have 

YAB y A B ' B  

E -  I P A -  v A B v B A Y -  1 V A B V V B ~ B V B A T -  . . . . (L;)-1 = - = S 
- Y A  B 9 B ' + B  B 9 

If we introduce the notation 

expression (22) may be written 

where we have made use of the relation 

Note that the decomposition (25a) is not unique ; we could equally well have written 

I t  remains to obtain expressions for the 9 functions. Consider first 9;: this is 
defined by the relation 

which is similar to the definition of 9, except that S has been replaced by 9' and 
A by B. We may therefore obtain an expansion for GBi from (24) by replacing A by B,  
E by B' (where E' # B )  or C ,  etc, and by making sure that no matrix elements involving 
the state A appear. Thus 

(The superscripts of the $2 functions indicate the states which are nor allowed to  appear 
in their expansion : this is evident from the definition (23).) 
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If we again use Z and J to label any eigenstate of H o ,  (26) may be written more 
concisely as 

We may repeat the procedure to obtain expansions for 9gB', etc. In the general case 
we find 

vNP vPO vO N 
g I J  ... M N g k J  ... NP-  ' '  

P + I , J  ,.... N,O O Z I , J  ,..., M , N  P 

Equation (28) defines a recurrence relation for the 9 functions. By repeated use of it 
one can obtain explicit expressions for them. It is apparent that they consist of a sum 
of products of (in general) infinite continued fractions. On examining expression (28), 
it is clear that (9kJ-.LM)- has a propagator type of structure for the state N in which 
transitions to the states ZJ . . . LM are forbidden. 

The zeros of S give the eigenvalues (or quasi-particle energies) of the interacting 
system. From (23), these are also given by the zeros of gA, and expression (24) gives 
this quantity in a convenient form for finding the zeros by iteration. 

Having obtained the perturbation expansion for L i ,  let us now do the same for L;. 
We have 

By repeatedly using expressions similar to (17) we obtain the expansion 

yAB = v A B Y A B +  1 I / , B s T / B f B Y A B B '  
B ' f B  

Consequently, employing relations of the same nature as (25),  we obtain 

In a similar fashion we obtain 
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etc. ( 3 3 )  

Although the formal solution, (24), (31 ) ,  (32), ( 3 3 )  is complicated it can be given an 
interpretation more in line with conventional many-body theory. In ( 3 1 )  for example 
we may associate the various terms with corresponding processes which take us from 
one unperturbed state to another under the action of the interaction V. Thus the 
following three processes correspond to the first three terms respectively of (31b): 

A + B  

A + I - - + B  (1 # A ,  B) (34) 
A + J + I + B  ( I  # A ,  B, J # A ,  B, I ) .  

We define an irreducible process to be one in which all the intermediate states are 
different from each other and from the initial and final states (however, the initial and 
final states may be identical). All the processes which occur in our expressions for the 
L and 9 functions are of this type. Only irreducible processes need be considered 
because the contributions from reducible processes are incorporated within the con- 
tinued fraction structure of the 23 functions. If one expands the 9 functions in Taylor 
series the reducible processes reappear. Consider for example the second-order approx- 
imation to L j  obtained by truncating expression (24) : 

The Taylor expansion of this quantity is (if it exists) 

All the contributions for k > 1 are represented by reducible processes. For example, 
the term for k = 2, namely 

is represented by the process 

A + B + A + B + A  ( 3 8 )  

which is clearly reducible. In fact the solutions we have obtained may be regarded as 
having been derived from ordinary perturbation theory by a renormalization procedure 
in which all the reducible processes are summed and incorporated into the continued 
fractions of the 9 functions. The present approach is more flexible than ordinary 
perturbation theory in that one can approximate the series or the 9 functions at different 
orders if necessary. 
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We may represent the process (38) as 

in which the boxed-in portion may be regarded as a sub-process inserted into the 
propagation of the system in the state A .  The situation is analogous to that of the 
many-body theory ofinteracting systems (eg Abrikosov er a1 1963) in which the important 
diagrams are those which cannot be considered as having been formed by the insertion 
of one or more self-energy parts into one or more particle lines of an abbreviated 
diagram. (We take the word 'particle' here to include photons, holes etc.) For brevity, 
we shall describe these important diagrams as irreducible, others as reducible. Now a 
particle line represents the propagation of a particle in a certain state, so that if a self- 
energy part is inserted into that line, then the state of the particle just before the point 
of entrance of the self-energy part is the same as just after the point of exit. Thus if a 
diagram is reducible, it must correspond to the same state being occupied at  two different 
points of the diagram. It follows that a reducible diagram corresponds to a reducible 
process. 

However, the correspondence between the conventional theory and the present one 
is not complete. Consider for example an interacting system of particles and photons; 
in the conventional theory one associates one type of Green function with the particle 
lines, and another with the photon lines whereas in the present theory there is just one 
type of propagator (the reciprocal of the 9 functions) which is associated with both 
particle and photon states. 

The processes which occur in expression (28) for the 9 functions, in addition to 
being irreducible, are also exclusiue, where by exclusive we mean that the states which 
appear as superscripts (ie the states, I, J ,  . . . , L,  M in 4nkJ-.LM) may not occur as inter- 
mediate states. 

Making use of these concepts we may formulate simple rules for calculating the 
solutions as follows. 

Rule 1 
To calculate L i  to kth order in V write down all the irreducible processes by which one 
may proceed from state A to state N through no more than ( k -  1)  intermediate states. 
With the initial state A, associate the propagator 4 n i  ', and with each intermediate state, 
M say, and with the final state, associate the propagator where the states 
I , J , .  . . , L are all the intermediate states which precede state M. With each transition, 
J + K ,  associate the interaction matrix element VJK.  Take the product of all these 
factors, sum over all allowed intermediate states, and add the contributions of each 
irreducible process. 

Thus to calculate L i  to third order, we have the contributions: 
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( I  # A ,  B :  J # A ,  B, I )  

Adding these gives the first three terms of equation (31b). An exception to this rule 

L j  = 9;1. (394 

is the case N = A :  then L i  is given simply by the relation 

Rule 2 
To calculate 9afN~.~~ to kth order write down all the irreducible, exclusive processes 
by which one can proceed from the state N through no more than (k - 1) intermediate 
states and back to the state N .  With each intermediate state, eg U ,  associate the 
propagator (9LJ-.LMNR...T)- where the states R ,  , . . , T are all the intermediate states 
which precede state U .  Propagators are not associated with the initial and final states. 
The procedure subsequently is the same as in rule 1 except that all the contributions are 
subtracted from E - wN. 

Thus to calculate $3;' to third order we have to consider the following processes : 

Combining these contributions as described, we obtain 

Finally, we note the alternative way of writing the products of the 9 functions 
implied by expressions (25). For example, in the third-order process for L i  given above 
eqvation (39a), we could have written the 9 functions as 

A - J - I - - + B  
@Y 97' a: 9 s  

ie we could have worked backwards in labelling the 9 functions instead of forwards 
as we have done in our previous examples. 

As our main interest here is with the interacting atom-radiation system described 
by the Hamiltonian (1) we consider in more detail the application of the foregoing rules 
to this case. We henceforth use a, b, c, . . . , i ,  . . . to label the eigenstates of the atomic 
system in isolation, and we use n as shorthand for the set of non-negative integers 
n ,  , n 2 ,  . . . , nN which define the photon occupation numbers. N is the total number of 
modes, which may be infinite. Thus a typical eigenstate of the unperturbed Hamiltonian 
H ,  HA + 'YF may be written li)ln) z lin) and the corresponding unperturbed eigen- 
value is Ei+XAnAcoA.  The primary processes of the interaction ( l d ) , i n  + j n f A ,  are 
shown in figure 1 together with the corresponding matrix elements. 

To illustrate the method, it is convenient to consider the especially simple case of an 
atomic system which has only two eigenstates, which we denote as lor)  and \/I) to 
distinguish them from the states of the multilevel atom, la), Ib), IC), . . . . The processes 
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which need to be considered in, for example, the calculation of gEorn to fourth order are 

(second order) 

The condition, A 1  # I is imposed in order that the processes be irreducible. If we 
allow L = A l  in the first of the fourth-order processes for example, it becomes reducible 
because the second and fourth intermediate states are then identical. It may then be 
considered as a renormalized second-order process : 

cin2E. 
an_ 2 /inE?-+ an_. (41) 

In figure 2 we represent the processes in (40) and (41) by diagrams. However, as it is 
quite straightforward to write out the processes in the manner described, we do not 
adopt the diagram approach subsequently. 

To demonstrate the calculation of the contributions from each process we consider 
some simpler examples which will be made use of in a later section. To calculate 9," 
to second order the relevant processes and their contributions are 

Hence, subtracting these two contributions from E - E,  - Xi niwi we obtain 

where we have used g t b g i a  = - (gBb12, which follows from (2a). In (42a) the propagators 
9g:A and 9;;-A appear. To calculate to second order for example, consider the 
processes 

-g,2(n.,+I+dAi,) '  d i i n L Z +  I + 6 , , , ) '  bnA- cni l . ,  - b$. 

bni. - c ~ A  - 21 *I bnl. g:(n,, +a,.,)' * -&n + 6 d  (A # E., if c = a) 

which give 
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(01 Irreducible 

(61 Reducible 

Figure 2. (a) the irreducible alid (b)  the reducible diagrams corresponding to processes (40) 
and (41) respectively. As in figure 1 only those photons which undergo emission or absorption 
are shown. The reducible fourth-order diagram ( b )  is equivalent to a second-order diagram 
in which the free atomic propagator - is replaced by a renormalized propagator =. 

The condition, I. # A1 if c = a, is imposed in the second process to ensure that it is 
always exclusive: if we set A = A1 and c = a the intermediate state becomes an, which is 
not allowed. 

To give an example of the calculation of a probability amplitude, consider L",. To 
third order, the processes which contribute are 

Using rule 1 we easily obtain 

where we have used (2a) to write g&&$)2 as - g$,lg$12. 
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So far we have ignored the contributions of Hgd), which we may write as 

where 

As expressions (44) indicate, the primary action of Hid’ is to cause the atom to change 
its state without affecting the photon occupation numbers. 

From the rules, it is clear that Hi.) may be taken into account simply by allowing 
transitions of the form 

in -+ j n :  hij 

for which the matrix element is, as indicated, hi j .  

the following processes : 
Thus to calculate Lii to second order taking into account HPd’ we must consider 

an_ -+ bn -+ an 

an_ -+ bnl -+ an 

an + bo-R + an_ 

(b  + a) 

which give 

Note, however, that ha, -v e’, whereas g t b  - e (e  being the electronic charge). Hence, 
if one is working to order e’ in (49, the contribution -Zbta  lhab12/gfi should be 
neglected, or, if one is working to  order e4, additional terms should be included involving 
terms of order 1gI4 and Ihl1g1’. 

is of the order e’ x 
the lowest-order contribution from HAF, and for this reason it may often be neglected. 
Finally we note that for a two-level system where p is off-diagonal, H(pOd) vanishes 
identically. This may easily be inferred from ( 3 4 .  

It is a general rule that the lowest-order contribution from 

4. The single-mode, two-level problem 

The rules described in the previous section apply to  any number of modes ; for the case 
of a single mode and two atomic levels they must lead to  the expressions derived earlier 
in I. It is instructive to examine briefly how this comes about. An analysis of this 
situation also assists in the interpretation of the multimode case. 

as ps+ 1. .... p s + n -  1 . The only 
processes which contribute to these are, respectively, 

Consider for example gas, 9%$?,,+ 1 * a s + 2 * . . . * a s + n - 1  and g a s ’ +  n 

a s - + p s + 1  -+as 

rs+j3s-1 +as  

p s + n + a s + n + l  -+ps+n (47) 

as+n-+Bs+n+l  -+as+n. (48) 
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To see that these are the only processes, consider example (47). The only alternatives 
are of the type 

p s + n  -+ r s + n -  1 -+ ps+n (49) 

B s + n + a s + n + l  - + ~ s + n + 2 - + a s + n + l  - + j s + n .  (50) 

and 

Process (49) is not allowed because it violates the exclusive condition and (50) is not 
allowed because the process is reducible. One may argue similarly for (46) and (48). 
Thus (46), (47) and (48) are the only processes which contribute to gas, 9 $ + y + n -  and 
g z s  ... 8 s + n -  1 and we may therefore write down the exact contributions following rule 2 as : 

(51) 

(n odd) (52 )  

( n  even. (53) 

z s + n  

II,, = E -  E , - s o -  1g12(s+ 1 ) / 9 K +  1 -1g12s/9;- 1 

9 ;:.; n z s  + n - 1 - - E - E,  - (s+ n)o - 1g12(s + n + l)/9:;nf;+n 

- E - E,  - (S + n)u~  - Ig12(S + n + 1)/9 p s + n +  1 
/ p S Y ; ; 3 S  + n - 1 - as , . .  . ,as + n 

(We have dropped the superscript i from g as this is superfluous in the single-mode case.) 
It is clear that (52) and (53) may be used repeatedly to generate continued fraction 

and B U S  , . . . , l S + n -  1 expressions for ~ ~ ~ . c . ; ; P ~ + ~ -  p s + n  

c zs .p . , -  1 ..... , , s - n +  1 - - E - E p - ( s - n ) o - ~ g l Z ( s - n ) / ~ ~ ~ ~ ~ ; P _ s ; "  
J p S - t I  

One may show in an entirely analogous manner that 

(n odd) (54) 

gm - n a p s - n -  1 * ( 5 5 )  z s . p s -  1.. ..Os - n -  1 = E - E - (s - n)w - 1g12(s - n ) / g a s . . . . , a s - n  

Consider rule 1 applied to the calculation of L z + n  where n is odd. The lowest-order 
process which contributes is the nth, and higher-order processes than the nth are not 
allowed because then as or js + n becomes an intermediate state. Therefore the only 
contributing process is 

as --$ js+ 1 -, a s + 2  -+ . . . -, r s+n -  1 -+ j s + n  

and L;;",,, is consequently given simply by 

g(s + 1)"2g(s + 2)'12 . . . g(s + n)ll2 
(n odd). ga.3z+ &:fy . . . q + y + ' " -  Lg+n = 

For n = 1 this expression is consistent with equation (43) applied to the single-mode case. 
Similarly one finds 

g*Fg* (s -  l)ll2 . . . g*(s- n + 1)1'2 

L$-n  = g a 3 g -  ly:4;- 1 . . , 9a$..;;zs-n+ 1 
(n odd). (57) 

Expressions identical to (56) and (57) may be obtained for L;ikn where n is now even, 
except that the final propagator in (56) must become 9z:+P+"- to give L:;+,,, and the 
final propagator in (57) must become 9:-p;ps-n+1 to give L::-,,. 

These results are identical with the ones obtained in I if one makes the following 
correspondence in notation : 

ZS,.. , p s + n -  1 = p : ; a s - n +  1 = 9 s + n  - 4 + n ;  - Ln; L::*!! = 4,,(e) 

L ; L n  &,,(e). g a s  ...., i s + n -  1 = 9 2 s  ...., p s - n + l  = 

The notation used here is more transparent than that used in I. 
p s + n  - & + n ;  p s - n  - wn; 
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One may repeat the calculations with the roles of a and /3 interchanged, and so re- 
cover the remainder of the results given in I.  

Consider one of the simplest expressions 

The continued fractions in (59) have a simple physical interpretation. Consider the first. 
The system may undergo emission from the state /as) to the state Ips+ 1) and then back 
again. The probability for this is proportional to lgI2(s+ 1). Thus the free propagator 
(E-E,-sw)- '  is modified by transitions to the state Ips+ 1). However, the system 
may propagate whilst it is in the intermediate state Ips+ l), the free propagator for this 
state being [E-E,-(s+l)w]-'. This is itself modified by transitions to the state 
las+2), and thus the term 1g12(s+2)/[E-EZ-(s-2)w] has to be subtracted. Hence the 
continued fraction structure reflects the modification of the free propagators due to 
transitions to intermediate states. The free propagator [E- E, -(s+ l)w]-' is not 
modified by the transition Ips+ 1) + Ius) because this process has been taken into 
account at an earlier stage in the continued fraction. Similarly, the state Ias) may 
undergo transitions to the state Ips - 1) and back again (ie absorption). The resulting 
sequence of transitions gives rise to the second continued fraction in (49). Thus the first 
continued fraction describes purely emissive processes, the second purely absorptive. 

The interpretation given here may be extended, with appropriate generalizations, to 
the multilevel, multimode case. 

5. Stimulated and spontaneous emission 

There has been a recent revival of interest in the quantum theory of stimulated and 
spontaneous emission (Bullough and Caudrey 1971, Knight 1972, Ackerhalt er a1 1973, 
Bullough et al 1974). These papers deal with the generalization of the Lamb shift and 
the damping constants to include contributions from stimulated processes. Bullough 
and Caudrey, Ackerhalt, Knight and Eberly, and Bullough, Caudrey and Obada use 
reaction field theory together with the two-level atomic model. However, as Knight 
(1972) has emphasized, the two-level atom is nor a good approximation to the multilevel 
atom as far as self-energy effects are concerned, and care must be taken in interpreting 
the results obtained from this model. Knight uses the A . p  forms of the interaction, and 
discusses only the electromagnetic shifts, but considers the multilevel case. 

In this section we apply the continued fraction method to this situation. We treat the 
multilevel atom model, but unlike Knight use the dipole approximation for the inter- 
action. The expressions we obtain for the shifts are in agreement with those found by 
the previously quoted authors, but in addition we give the generalization of the damping 
constant to include stimulated processes. (The appropriate generalization for the two- 
level mod21 has been given by Bullough et a1 1974). Our method gives an expression for 
the lineshape directly, and furthermore allows the interpretation that each level Ei has 
a shift Ai and a damping constant Ti associated with it. However, in determining the 
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lineshape for transitions from level i to level j we show that it is the difference of the shifts 
Ai -Aj and the sum of the damping constants Ti + Tj which are important. Our method 
has the further advantage that it may be straightforwardly extended to treat fourth- 
order contributions. 

photons 
present (ie the field is in a pure number states). To obtain expressions for the lineshape 
we first ask for the probability that the atom will be found in the state Ib) at the later 
time t with an additional photon present in the mode A ( 2  need not be one of the modes 
initially occupied). To calculate this we need Lg,. For the present purposes it is 
sufficient to consider only the first-order contribution, which derives from the process 
an -+ bni .  Rule 1 gives straightforwardly 

We suppose that at time t = 0 the atom is in the state la)  and there are 

We assume n, 5 1, all E., so that complications due to the dynamic Stark effect may be 
neglected (eg Stroud 1973). Then it is sufficient to take the second-order approximations 
to GBan and @:,, and these are given by equations (42a) and (42b) respectively. We take 
the zeroth approximation to the propagators which appear in the denominators of 
these expressions. Explicitly then, we have 

where z = E-C,n,o,. Bearing in mind that in the formula for the inverse Laplace 
transform (4) the contour lies above the real axis (a rigorous method of evaluating these 
integrals is described by Goldberger and Watson 1964) we set 

when it is clear that the poles of (60) occur at 

+ 
x - E, + w,, + is x - E, - U,, + is x - E a - 1  C Ig;1:12 

A I  c 

and 

It seems adequate to order 1gI2 to set x = Ea and x = E,+o ,  in the denominators of 
(62) and (63) respectively, when we obtain 
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where E i , j  E i - E j .  We assume for simplicity that the incident photons are un- 
polarized, and we replace the sums over modes by integrals over wavevectors in the 
usual way : 

(Q represents the solid angle.) Using 

where P denotes the principal value of the integral, we find that the poles may be written 

x = E a + A , -  ir,; X = Eb+COi+Ab- ir,. (68) 

The shifts A ,  and halfwidths Ti of the level E,  are given explicitly by 

Ai = S-IdQs V k 2  d k i p : , i " P ( L - - )  nk+ 1 
k - kc,i kiqc + k 

and 

where ki = Ei/c  and O(x) = 1 if x > 0 and 0 if x < 0. Note that (70) is the generalization 
of the usual Wigner-Weisskopf type of result to the multilevel case and to include 
stimulated processes. We have assumed that the nl are sufficiently dense for the condi- 
tion (1 - 6,,,6,) in the first term of (65) to be replaced by unity. The B A L ,  term in the final 
part of (65) makes zero contribution when the sum is replaced by an integral. 

Our expressions for the electromagnetic shifts A,  and radiative damping constants 
Ti are in line with the usual interpretation that real transitions (ie energy conserving or 
resonant ones) give rise to lifetime effects, and virtual transitions (ie energy non- 
conserving or non-resonant ones) give rise to frequency shifts. Thus the contributions 
to Ti arise from transitions from the energy level Ei to levels E, with higher energy with 
the corresponding absorption of photons of wavevector k = kc, i ,  and from transitions to 
levels of lower energy with the spontaneous and stimulated emission of photons of wave- 
vector k = k,,,.  Because the principal parts of the integrals in (69) have to be taken, it 
is clear that the photons of wavevector k = Iki,,l make zero contribution so that the 
shifts Ai  arise from all transitions except the resonant ones. 

Thus we may write 

and the inverse Laplace transform is easily performed. From (4)  one finds 

where, as before, a comma between two subscripts indicates that the difference is to be 
taken between the corresponding quantities, eg r a , b  E r, - r b .  If we assume that our 
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detector responds to the average probability of a photon being present over a period 
very much greater than the atomic lifetimes, then the response will be proportional to 

so that although the difference of the atomic lifetimes appears in (72), it is their sum only 
which appears in the physically more important result (73). If oL is close to  resonance 
for a particular atomic level, ie oi 1 Ea,b for just one state Ib), then this term in the sum 
over b will dominate the other contributions. 

Now expression (73) refers to the observation of photons due to transitions between 
two excited states. Obviously, the shutter of the photon detector must be open from time 
t = 0 when the system is in the state a with n photons present ; at times t >> ra- I ,  r; 
the occupation probability of the levels a and b will be approximately zero, as the atom 
will have decayed to lower levels. If we now take b to be the ground state of the system 
and consider spontaneous emission from level a we have the situation discussed by 
Weisskopf and Wigner (1930). It follows from (70) that rb = 0, and so for times t >> ra- I 
the probability of the system being in the ground state is close to unity. I t  is then 
sufficient, following Weisskopf and Wigner, to assume that the probability of observing 
a photon is proportional to E:,(cc) where from (72), 

Our previous criterion for observing a photon also leads to this result as the decaying 
terms in (72) are negligible compared with the time-independent term if the shutter of 
the photon detector is open for an interval much greater than ra-'. 

To proceed further in the discussion of (73) it is convenient to  consider a definite 
experimental situation : we assume a unidirectional beam of photons in the state In) is 
incident on the atomic system. Choosing a direction away from the incident beam, one 
seeks to detect a photon in the mode A l .  (Obviously, A I  is not one of the modes occupied 
at t = 0 ie ni l  = 0.) The lineshape observed is obtained from (73) on multiplying by 
the density of states factor 

V 
-k2 6k1 6R 
4n3 (74) 

where 6 k l  and 6R are determined by the resolution of the photon detector, which we 
have assumed does not differentiate polarization. Using expression (2) for g:,, we find 

Our derivation of (75) demonstrates that it is meaningful to  associate shifts and life- 
times with each atomic level, and that it is the sums of these lifetimes for the two states 
concerned which determine the linewidth, whereas it is the difference of the shifts 
which determines the resonance condition. 

In the Wigner-Weisskopf approach one obtains a factor k,",b in the numerator instead 
of the k:  of (75). Equation (75) therefore shows small but significant deviations from the 
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Lorentzian shape, and the maximum occurs, not at  W k ,  = Eo,6+ A a , b  but at 

W k r  = Ea.b + Aa,b + 3(ra + rb)2/2Ea,b (76) 

(see Power and Zienau 1959, for detailed discussion). 
The next step is to obtain explicit expressions for the shifts and linewidths, and it is 

convenient to consider the case of pure spontaneous emission first. Accordingly, we 
set n k  = 0 in (69) and (70), and using expression (2) for gf j ,  we obtain 

The angular integrals in (77) and (78) have been performed, and we use the superscript 
(0) to indicate that we are col-idering the case of pure spontaneous emission. Equation 
(77) is close to the expression of Bethe (1947) for the non-relativistic shift, but still 
contains divergent terms. Equation (78) indicates that the lifetime of level i is determined 
by spontaneous emission of resonant photons from level i to all levels lower than Ei 
in energy which are connected by the dipole matrix elements, in agreement with the 
results of Weisskopf and Wigner (1930a, b). 

We very briefly discuss the divergent terms in (77) : evaluating the integral we obtain 

Now the first term in (79), which is cubically divergent, is exactly cancelled by H(pd), as 
may be seen by comparing (79) with (3e) and(3f). This cancellation was first demonstrated 
by Power and Zienau (1959). The Thomas-Reiche-Kuhn sum rule 

e2 1 Ipc,it2kc.i = (80) 
C 

may be used to write the second term of (79) as 

(Aio)) ,  = -- - e2 I k d k .  
6 7 ~ ~ ~ 0  2mc 

This expression is independent of the level quantum numbers i, and so it shifts each 
level equally. It may be removed therefore by redefining the zero of energy. The third 
term may be removed by mass renormalization, following Bethe (1947). Consequently, 
we are left with 

This expression is now dentical to Bethe’s for the non-relativistic Lamb shift. It is still 
divergent, but if we impose a cut-off at the Compton wavenumber, Kc = mc, we obtain 
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Consider now the stimulated contributions to Ai, which we write as Ai”). One easily 
obtains 

s k - kc,i k + kc.i 

1 
8 x 3 ~ ,  

AI”) = ---C 1 dRcos’6 dkk3n(k,R)P 

1 
= 8n3 1 Ipc.i12 J dR cos’6 p k c , i  J dkn(k, R)k 

E o  c 

1 + k$P dkn(k, Cl)( - 

(84) 

The sum rule (80) may again be used to  show that we may disregard the first term of (85). 
We note that expressions analogous to the first and third terms of (79) do not appear in 
the stimulated contribution ; such terms which arise from the (k + ki,J- factor in (84) 
are in fact cancelled out by similar terms from the -(k - ki,J-  factor. One is thus left 
with only the final term in (85). Combining (85) with (77) we obtain for the generalized 
Lamb shift 

1 n(k, R) n(k, 0) + 1 
Ai = A!O)+A?) = 87r3~, -~ lpc , i~’k~+i /dRcos26P(-+  k - kc,i k + kc,i 

This is the generalization of Bethe’s formula to include stimulated processes. 
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